deepaccess-package

Methods for training and interpretation of an ensemble of neural networks for multi-task functional prediction of accessibility or histone modifications from DNA sequence.

View the Project on GitHub gifford-lab/deepaccess-package

Home

Interpretation

Quick Start

Training

Interpretation

We provide two methods of interpretation of trained DeepAccess models:

  1. ExpectedPatternEffect and DifferentialExpectedPatternEffect
  2. Per-nucleotide importance
  3. Prediction

ExpectedPatternEffect and DifferentialExpectedPatternEffect

ExpectedPatternEffect and DifferentialExpectedPatternEffect can be run using either motifs in PWM or PCM representation (from a database like HOCOMOCO or HOMER) or patterns in a fasta representation which can be used to test spacing or combinations of motifs.

Per-nucleotide importance

Per-nucleotide importance is run using an input of one or more fastas and returns the model-derived importance of each nucleotide within each fasta sequence.

Prediction

For predicting from a trained model, input the directory of the model and one or more fasta sequences:

deepaccess interpret -trainDir trained_deepaccessmodel -fastas seqs_1.fa seqs_2.fa

The output will be files trained_deepaccessmodel/seqs_1.prediction, trained_deepaccessmodel/seqs_2.prediction, containing the predicted accessibility for each class.

Usage

usage: deepaccess interpret [-h] -trainDir TRAINDIR
       		  [-fastas FASTAS [FASTAS ...]]
		  [-l LABELS [LABELS ...]] [
		  -c COMPARISONS [COMPARISONS ...]]
		  [-evalMotifs EVALMOTIFS]
                  [-evalPatterns EVALPATTERNS]
		  [-p POSITION] [-saliency]
		  [-subtract] [-bg BACKGROUND] [-vis]

optional arguments:
  -h, --help            show this help message and exit
  -trainDir TRAINDIR, --trainDir TRAINDIR
  -fastas FASTAS [FASTAS ...], --fastas FASTAS [FASTAS ...]
  -l LABELS [LABELS ...], --labels LABELS [LABELS ...]
  -c COMPARISONS [COMPARISONS ...], --comparisons COMPARISONS [COMPARISONS ...]
  -evalMotifs EVALMOTIFS, --evalMotifs EVALMOTIFS
  -evalPatterns EVALPATTERNS, --evalPatterns EVALPATTERNS
  -p POSITION, --position POSITION
  -saliency, --saliency
  -subtract, --subtract
  -bg BACKGROUND, --background BACKGROUND
  -vis, --makeVis

Arguments

Argument Description Example
-h, –help show this help message and exit NA
-trainDir –trainDir directory containing trained DeepAccess model test/ASCL1vsCTCF
-fastas –fastas list of fasta files to evaulate test/ASCL1vsCTCF/test.fa
-l –labels list of labels for each bed file C1 C2 C3
-c –comparisons list of comparisons between different labels ASCL1vsCTCF ASCL1vsNone runs differential EPE between ASCL1 and CTCF and EPE on ASCL1; C1,C2vsC3 runs differential EPE for (C1 and C2) vs C3
-evalMotifs –evalMotifs PWM or PCM data base of DNA sequence motifs default/HMv11_MOUSE.txt
-evalPatterns –evalPatterns fasta file containing DNA sequence patterns data/ASCL1_space.fa
-bg –bg fasta file containning background sequences default/backgrounds.fa
-saliency –saliency calculate per base nucleotide importance NA
-subtract –subtract use subtraction instead of ratio for EPE / DEPE False
-vis –makeVis to be used with saliency to make plot visualizing results NA